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Abstract. In this paper we propose a model of the cardiovascular sys-
tem, where stressed blood volume is a model parameter instead of an
initial condition. Stressed blood volume (SBV) is an important indica-
tor of fluid responsiveness, i.e., this term can help to classify patients
between responders and non-responders to fluid therapy. We study a six
compartment model, then using the conservation of total blood volume,
one differential equation of the original model is omitted and a new model
is obtained. Comparing the haemodynamic signals of the previous model
and the new version, we show that the simulations are qualitatively sim-
ilar. One important difference with the original model is that the initial
conditions for solving the proposed model are arbitrary. This allows us to
perform a sensitivity analysis using automatic differentiation of the re-
duced model for all model parameters without excluding any parameter
a priori, unlike the authors of the original formulation have done. This
analysis showed that two parameters, the heart period and the stressed
blood volume, have a major effect on the performance of the model.

Keywords: Cardiovascular System, Mathematical Model, Sensitivity
Analysis.

1 Introduction

In this study, a cardiovascular model of five differential equations is presented,
which is a reduced proposal based on the closed-loop model of Pironet et al. Due
to the complex circulatory interactions, the model-based method and the mathe-
matical descriptions of the system has been used for monitoring and analyzing
haemodynamic signals. Some applications of this kind of models are teaching
quantitative physiology [8], simulating cardiovascular adaptation to orthostatic
stress [7] and computing stressed blood volume [12].

The model proposed by Defares et al. is one of the first models that introduce
the electrical circuit components representation of the heart haemodynamic. The
cardiovascular system in the model consists of the two ventricles connected by
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the systemic and pulmonary circulations. From the electrical representation of
the model, the authors developed an electrical circuit analogue computer for
simulating haemodynamics in real-time [2]. Furthermore, the development of
cardiovascular simulators like CVSim software has been based on this model [8].

Smith et al. developed a minimal model of the cardiovascular system, which
includes the direct ventricular interaction through modelling of the septum and
the pericardium [14]. This model-based method has been validated against an-
imal data and the subject-specific parameters can be identified by using data
obtained from measurements typically available in the intensive care unit [13].
The sixteen model parameters are stressed volume, six resistances, six elastances,
the cardiac period and two values for the width of the Gaussian functions which
appear in the definition of the ventricles.

Considering the above model without the direct ventricular interaction and
using data of pigs, Pironet et al. have computed the stressed blood volume, which
is an important determiner of “fluid responsiveness”, i.e., this term can help to
classify patients between responders and non-responders to fluid therapy [12].
In fact, Maas et al. have proved that in humans the capacity to improve cardiac
output in response to infuse fluids and the stressed blood volume are inversely
proportional under the assumption of circulatory arrest on the forearm [10].

Unlike this experimental work, Pironet et al. have solved a parameter identi-
fication problem for eleven of the sixteen parameters because the cardiac period,
the elastance of the two ventricles and the two parameters of the width have
been excluded. This problem consists in determining the parameters for which
the measure of error between the model output and a corresponding set of ob-
servations is minimized. The solution of it relies on the following three steps
procedure. First, are nominal values assigned to the model parameters. Second,
are some parameters selected by performing a sensitive analysis on the error vec-
tor, which is associated to the parameter vector. Third, are the most sensitive
parameters identified by solving a minimum norm problem with an iterative al-
gorithm. Based on this procedure, the authors have found that stressed volume
is one of the parameters to which the error vector is the most sensitive and have
assigned an optimized value to it.

The aim of this study was to propose a model of the entire circulation as-
suming supine position based on the model of Pironet et al. to evaluate the
relative importance of the model parameters on the performance of the model
without excluding any parameter. The method used was carrying out a first or-
der sensitivity analysis around a nominal point of the parameters, which implies
to differentiate the set of state equations with respect to the vector of parame-
ters, and to assume that the vector of input variables does not depend on the
parameters. This assumption it is not accomplished by the original formulation
of Pironet et al., in order to avoid this, it is proposed reducing the number of
differential equations by one using that there is a conserved quantity of stressed
blood volume.

The paper is organized as follows: In section 2 a basic framework to the
physics of cardiovascular circulation is presented. Section 3 contains a brief sum-
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mary of the basic concepts for developing lumped models and the demonstration
that the model of Defares et al. and Pironet et al. are equivalent. In section 4
the proposed reduction of the model of Pironet et al. and the sensitivity analysis
of this model is presented.

2 Physics of the Cardiovascular System

The cardiovascular system is defined as a set composed of the heart, blood vessels
(arteries, veins and capillaries) and blood. The set of structural and functional
relations, which are established between these components, are integrated to the
system to accomplish the blood circulation [6].

From a mechanical point of view, each half of the heart is composed of an
atrium and a ventricle acting like a pulsatile pump coupled to the another one:
the “right heart” which drives desoxygenated blood to the lungs and the “left
heart” that propels oxygenated blood to all tissues of the body. In this sense,
two circulations are distinguished: the systemic circulation and the pulmonary
circulation. There are four heart valves which open and close to ensure a one-way
flow through the heart. When the difference of pressure is positive, the valves
are opened to allow the flux of blood. However, when the difference of pressure
is negative, they are closed to avoid flux of blood from leaking backwards.

In haemodynamics, two important issues are the definition of the compliance
chamber and the resistance vessel. The compliance chamber is considered a com-
partment with elastic walls, in which no opposition to blood flow is found. On
the other hand, the resistance vessel compartment determines the resistance of
blood flow through the “tube” . Both concepts can be defined as follows.

Definition 1. The compliance (C) of an elastic chamber, inverse term of elas-
tance (E), is the relation between the volume of the compartment (V ) with respect
to the pressure in it (P ), given by the equation:

V = CP + Vu = E−1P + Vu, (1)

where Vu is the unstressed volume of the chamber.

Definition 2. The vascular resistance (R) against blood flow is defined as a
relation between the pressure gradient (∆P ) and the total flux of a fluid (Q),
given by the equation:

Q =
∆P

R
, (2)

where ∆P denotes the pressure difference of the adjacent compartments.

There are two blood volumes in which the total volume within the blood vessels
can be divided. Up to 75% of the blood can be considered as unstressed volume
(Vu). Vu denotes the blood which is contained in the vasculature at zero trans-
mural pressure, i.e., the blood which does not create stress across the vessel walls
because it is only filling out its natural shape. Due to the elastic properties of the
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blood vessels, it is possible to add more volume, this extra volume is referred as
stressed volume (Vs) since it is responsible of stretching the walls and creating a
distending pressure. Using the fact, that the total blood volume in a compliance
vessel is the same as the sum of unstressed volume and stressed volume in it,
i.e., VS = V − VU , it is possible to re-write (1) in terms of stressed volume as it
follows

P =
1

C
Vs = EVs. (3)

3 Mathematical Models of the Cardiovascular System

In this section, it is given the derivation of the equations governing the closed
lumped models of Defares et al. and Pironet et al. Based on the analogies between
hydraulic parameters and electrical parameters that associate pressure with volt-
age, volume with charge, flow with current, compliance with capacitance and
vascular resistance with resistance. It is possible to represent both models as the
circuit with six capacitors, six resistors and four diodes. A schematic diagram of
these models is given in Figure 1. The capacitors denote the properties of compli-
ance of systemic arteries (Csa), systemic veins (Csv), pulmonary arteries (Cpa),
pulmonary veins (Cpv), left ventricle (Clv) and right ventricle (Crv). The resistors
Rs and Rp are associated to the flow resistance in the systemic capillaries and
pulmonary capillaries, respectively. For mimicking the heart valves, four combi-
nations of diode-resistor are considered. Then, Rao−Dao, Rmi−Dmi, Rpu−Dpu

and Rtr −Dtr represent the aortic valve, mitral valve, pulmonary valve and tri-
cuspid valve, respectively.

For simplicity, it is assume that compliance of arteries and veins of both
circulations and all the vascular resistances are constants throughout their re-
spective compartment. On the other hand, both ventricles are considered as
time-varying capacitors [16], which means that the elastance of the left ventri-
cle, Elv : [0,∞)→ R, and the elastance of the right ventricle, Erv : [0,∞)→ R,
are invertible functions of class C1, which mimic the ratio of intra-ventricular
pressure and intra-ventricular volume in the respective compartment.

Fig. 1: Electrical analog for the cardiovascular system. Notice that Clv = E−1
lv and

Crv = E−1
rv
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A first approach in studying the volume and the pressure in different com-
partments of the cardiovascular system considers models without control mecha-
nisms, which means that the regulation of human blood pressure is neglected [12,
4, 14, 11, 15]. These kind of models usually assume that the function of elastance
used to model ventricle muscle activation is a T−periodic function, where T de-
notes the heart period . In particular, the elastance functions (Ek, k = {lv, rv})
given by Smith et al. are considered for this work [14]. Ek is defined as:

Ek(t) =Emax,k exp

[
−Wk

(
t mod T − T

2

)2
]

Emax,lv and Emax,rv denote the end-systolic elastance of the left and right ven-
tricle, respectively.

In order to get the model of Defares et al., which is originally given for
the state vector p = [Plv, Psa, Psv, Prv, Ppa, Ppv]. It is necessary to apply the
Kirchhoff’s laws to the circuit shown in Figure 1. Then, substituting the following
equations.

Qi =R−1
i ∆Pi, i = {mi, ao, s, tr, pu, p}

Qj =CjṖj , j ∈ {sa, sv, pa, pv}
Qk =E−1

k (Ṗk − ĖkVs,k), k ∈ {lv, rv}
Pk =Ek(t)Vs,k, k ∈ {lv, rv}.

It is gotten that the state equations for the model of Defares et al. are

Ṗlv =Elv

(
Ppv − Plv

Rmi
H(Qmi)−

Plv − Psa

Rao
H(Qao)

)
+
Ėlv

Elv
Plv,

Ṗsa =
1

Csa

(
Plv − Psa

Rao
H(Qao)− Psa − Psv

Rs

)
,

Ṗsv =
1

Csv

(
Psa − Psv

Rs
− Psv − Prv

Rtr
H(Qtr)

)
,

Ṗrv =Erv

(
Psv − Prv

Rtr
H(Qtr)− Prv − Ppa

Rpu
H(Qpu)

)
+
Ėrv

Erv
Prv,

Ṗpa =
1

Cpa

(
Prv − Ppa

Rpu
H(Qpu)− Ppa − Ppv

Rp

)
,

Ṗpv =
1

Cpv

(
Ppa − Ppv

Rp
− Ppv − Plv

Rmi
H(Qmi)

)
.

H(t) is the standard Heaviside step function defined by H(t) = 0 for t ≤ 0
and H(t) = 1 for t > 0, which reflects the fact that if a diode Di is in the
OFF state then the resistance in the respective compartment Ri is infinite, with
i ∈ {ao,mi, pu, tr}. Therefore, the blood flow in the compartment is zero, i.e.,
Qi = 0 and H(Qi) = 0. Also, the fact that if a diode Di is in the ON state then
blood flow in the compartment is positive and H(Qi) = 1.
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Since Elv and Erv depends only of the time. Then, the model of Defares et
al. can be written as the following linear system

ṗ = AD(t)p (4)

where AD is the coefficient matrix. There is a theorem of Liapunov [1892]
which affirms that the equation p = M(t)y, where M is an invertible matrix
of functions of class C1, transforms the system (4) to ẏ = B(t)y, where B
is a periodic coefficient matrix whose characteristic multipliers coincide with
those of (4). The proof of this theorem is given in [3], Th. 2.2.7. According
to the above remark, the transformation p = M(t)v, where v are the state
variables v = [Vs,lv Vs,sa Vs,sv Vs,rv Vs,pa Vs,pv] and the matrix M is defined as
M = diag(Elv, Esa, Esv, Erv, Epa, Epv), carries the model of Defares et al. into
the model considered by Pironet et al., which is given by

v̇ = AP (t)v, (5)

where AP is equal to M−1
P (ADMP −ṀP ). Since the elastance functions Elv and

Erv are T -periodic functions. Then both systems have the same characteristic
multipliers. It is worth pointing out that the set of characteristic multipliers
determine the behavior of the solutions, the existence of a periodic solution and
the stability of the system.

4 Reduced Cardiovascular Model

Pironet et al. note that the vector of initial conditions for solving (5) must satisfy
that the sum of its entries is equal to the total stressed blood volume, denoted
by SBV. Then, the complete model of Pironet et al. is given by

V̇s,lv =− ElvVs,lv

(
H(Qmi)

Rmi
+
H(Qao)

Rao

)
+ Vs,sa

H(Qao)

RaoCsa
+ Vs,pv

H(Qmi)

RmiCpv
,

V̇s,sa =ElvVs,lv
H(Qao)

Rao
− Vs,sa

Csa

(
H(Qao)

Rao
+

1

Rs

)
+

Vs,sv
CsvRs

,

V̇s,sv =
Vs,sa
CsaRs

− Vs,sv
Csv

(
1

Rs
+
H(Qtr)

Rtr

)
+ ErvVs,rv

H(Qtr)

Rtr
,

Vs,rv =Vs,sv
H(Qtr)

RtrCsv
− ErvVs,rv

(
H(Qtr)

Rtr
+
H(Qpu)

Rpu

)
+ Vs,pa

H(Qpu)

RpuCpa
,

V̇s,pa =ErvVs,rv
H(Qpu)

Rpu
− Vs,pa

Cpa

(
H(Qpu)

Rpu
+

1

Rp

)
+

Vs,pv
CpvRp

,

V̇s,pv =ElvVs,lv
H(Qmi)

Rmi
+

Vs,pa
CpaRp

− Vs,pv
Cpv

(
1

Rp
+
H(Qmi)

Rmi

)
,

SBV =Vs,lv(0) + Vs,sa(0) + Vs,sv(0) + Vs,rv(0) + Vs,pa(0) + Vs,pv(0).
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So the initial conditions of this model depend on the stressed blood volume. In
order to get a formulation of this model in which initial conditions are arbitrary
and stressed blood volume appears in the differential equations, it is important to
notice that in normal conditions a constant quantity of blood (VT ) is contained
in the human circulatory system. Then, assuming that VT is known, it is feasible
to compute the stressed blood volume in the systemic venous circulation Vs,sv
in terms of the other state variables. Hence,

Vs,sv =VT − Vu − Vs,lv − Vs,rv − Vs,sa − Vs,pa − Vs,pv (6)

where Vu = Vu,sa + Vu,sv + Vu,pa + Vu,pv + Vu,lv + Vu,rv. Finally, omitting the
differential equation of Vs,sv and substituting (6) in the remaining equations of
complete model of Pironet et al. it is gotten the simplification of this model,

V̇s,lv =− ElvVs,lv

(
H(Qmi)

Rmi
+
H(Qao)

Rao

)
+ Vs,sa

H(Qao)

RaoCsa
+ Vs,pv

H(Qmi)

RmiCpv
,

V̇s,sa =Vs,lv

(
Elv

H(Qao)

Rao
− 1

CsvRs

)
− Vs,sa

(
H(Qao)

CsaRao
+

1

CsaRs
+

1

CsvRs

)
,

+
1

CsvRs
(SBV − Vs,rv − Vs,pa − Vs,pv) ,

V̇s,rv =− Vs,rv
(
ErvH(Qtr)

Rtr
+
ErvH(Qpu)

Rpu
+
H(Qtr)

RtrCsv

)
+ Vs,pa

(
H(Qpu)

RpuCpa

− H(Qtr)

RtrCsv

)
+
H(Qtr)

RtrCsv
(SBV − Vs,lv − Vs,sa − Vs,pv) ,

V̇s,pa =ErvVs,rv
H(Qpu)

Rpu
− Vs,pa

Cpa

(
H(Qpu)

Rpu
+

1

Rp

)
+

Vs,pv
CpvRp

,

V̇s,pv =ElvVs,lv
H(Qmi)

Rmi
+

Vs,pa
CpaRp

− Vs,pv
Cpv

(
1

Rp
+
H(Qmi)

Rmi

)
.

4.1 Sensitivity Analysis

The sensitivity functions let to study the influence of a model parameter onto
the model output. However, these functions are not dimensionless quantities,
reason why it is difficult to compare the sensitivity for different parameters. To
avoid this, relative sensitivity is considered.

The reduced mathematical model can be re-written as

dx(t)

dt
= f(t, x(t,p),p)

where x = [Vs,lv, Vs,sa, Vs,rv, Vs,pa, Vs,pv] is the state variables vector and p =
[Wlv,Wrv, T, SBV,Emax,lv, Emax,rv, Esa, Esv, Epa, Epv, Rs, Rp, Rmt, Rav, Rtc, Rpv]
is the parameter vector.

Let p0 be the parameter vector with nominal values. The relative sensitivity
functions are calculated with the equation

Sij(t) =
p0j

xi(t, p0)

∂xi(t, p
0)

∂pj
, (7)
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where i ∈ {1, . . . , 5} j ∈ {1, . . . , 16}.
Using Automatic Differentiation this sensitivity functions are exactly com-

puted. In order to determine the parameters that most greatly affect the model
dynamics and since the sensitivities are time-variant functions, the integral of
the absolute value of relative sensitivities in the period [0, tf ]

Iij =

∫ tf

0

|Sij |dt (8)

is calculated, where tf is the final time points, respectively. In practice, the
integral is approximated with a trapezoidal method.

5 Results

Due to the numerical instability that the terms ĖlvE
−1
lv and ĖrvE

−1
rv , which

appear in the (4) model [4]. Only the models of Pironet et al. and the reduction
of this model are simulated. There are sixteen model parameters in these models.
In this work all simulations were conducted assuming pig number 2 with 31.0 kg
and stressed blood volume of 990 ml, which model parameters are reported and
computed by [12], details about the assigning of these nominal values are found
in the original reference. The parameters related with the elastance functions
are the heart period, the width of each function, the end-systolic elastance of
the left and right ventricle with the following values T = 0.474 (s), Wlv = 68.9,
Wrv = 239 (s2), Emax,lv = 1.3 and Emax,rv = 1.84 (mm Hg/ml), respectively.
The resistance in the systemic capillaries, pulmonary capillaries, aortic valve,
pulmonary valve, mitral valve and tricuspid valve are Rs = 1.69, Rp = 0.256,
Rav = 0.04, Rpv = 0.03, Rmt = 0.05 and Rtc = 0.04 (mm Hg s/ml). Finally,
the elastance in the compartments related with the arteries and veins of both
circulations are Esa = 1.03, Esv = 0.00710, Epa = 0.699, Epv = 0.433 (mm
Hg/ml).

The code was entirely developed and written in Octave and makes use of
Martin Fink’s myAD package [5], which provides a full framework for performing
automatic differentiation in the Octave-environment.

Fig. 2 shows the validation of the reduced model against the original formu-
lation by simulation. In particular, Fig. 2a shows the pressures waveforms of the
systemic circulation using the complete model of Pironet et al. and Fig. 2b shows
the same waveforms using the reduced version of this model. A mean arterial
systemic pressure of 60 mm Hg or greater indicates an adequate tissue perfu-
sion. Derived from the minimum and maximum values of the aortic pressure
waveform (dashed line), it is gotten that for the above simulations this value
is 102 mm Hg. The pressure-volume loops of both ventricles using the model
of Pironet et al. (Fig. 2c) and the reduced version of this model (Fig. 2d) are
also presented. The intra-ventricular pressure in both simulations is in the range
of 0-50 and 0-120 (mm Hg) for the right and left ventricle, respectively.Since
the reduced model has five state variables and sixteen model parameters. There
are eighty relative sensitive functions Sij , i ∈ {1, . . . , 5} j ∈ {1, . . . , 16}. Due
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to the extension of this paper, in Table 1 is summarized the values for the in-
tegral of the absolute value of relative sensitivities computed using (8). The
first order relative sensitivity analysis around the nominal parameter vector
p=[68.9,239,0.474,990,1.3,1.84,1.03,0.0710,0.699,0.433,1.69,0.256,0.05,0.04,0.04,
0.03] of the reduced version of the model of Pironet et al. showed that heart
period parameter (T ) is the most sensitive parameter for all the state variables
(Notice that the values of I13, I23, I33, I43 and I53 are the greatest for each
column in Table 1). In second or third place appears the values of the Iij related
with the relative sensitivity of the state i ∈ {1, . . . , 5} and the elastance of the
compartment i, i.e., a very sensitive parameter for each compartment is that
related with the properties of elasticity of the respective compartment. Also the
stressed blood volume appears in second or third place.
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Fig. 2: Simulations of the pressures waveforms of the systemic circulation using model
of Pironet et al. (2a) and the reduced form of this model (2b). Solid line: left ventricular
pressure (Plv), dashed line: aortic pressure (Psa), dotted line: systemic vein pressure
(Psv). Pressure-volume loops of both ventricles using model of Pironet et al. (2c) and
the reduced form (2d). Solid line: right ventricle, dotted line: left ventricle.
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Table 1: Values for the integral of the absolute value of relative sensitivities
Iij i 1 2 3 4 5
j Vsa Vpa Vpv Vlv Vrv

1 Wlv 3.2823 14.7651 27.5285 4.4656 7.6817
2 Wrv 5.1989 6.5559 6.1118 5.3763 9.0972
3 T 293.5285 576.0204 606.0967 349.3209 981.7219
4 SBV 19.3250 22.8469 21.6789 19.6447 24.1578
5 Elv 2.4921 3.1688 3.6778 20.7309 2.9383
6 Erv 0.4076 0.8474 0.4478 0.4043 20.2093
7 Esa 22.5017 2.9541 3.2713 4.0641 2.8110
8 Esv 11.9153 14.2128 13.4559 12.1294 15.0483
9 Epa 1.0760 24.7842 0.9760 1.0859 3.6289
10 Epv 1.0555 1.8552 22.9095 1.1959 1.3454
11 Rs 18.1934 0.7841 3.2550 13.7335 2.7022
12 Rp 1.1640 9.4063 1.3112 1.1849 5.2503
13 Rmi 1.3771 5.9197 11.1448 1.4349 3.0740
14 Rao 0.2073 0.0968 0.2933 0.9907 0.0439
15 Rtr 9.7370 12.3486 11.5693 10.0734 13.0519
16 Rpu 0.1743 0.3028 0.2266 0.1796 1.8917

Figure 3 shows the waveform of Vsa using the nominal values, augmenting ten
percent of the nominal value for T and augmenting ten percent of the nominal
value for Rp. It is important to highlight that T is the most sensitive parameter
and Rp is an insensitive parameter for Vsa.

6 Conclusions

It has been shown that under certain conditions the Defares et al. and Pironet et
al. models are equivalent. In the sense that there is a transformation that carries
system (4) into (5) and makes the set of characteristic multipliers associated
to each model coincide. Moreover, it is given a reduced version of the model
of Pironet et al., instead of a system of six differential equations, this reduced
version has five differential equations. Some differences between these models
are that the first one is a linear homogeneous system of differential equations
and the second one is a linear non-homogeneous system of differential equations
with constant forcing terms. The initial conditions of the reduced model do not
depend of any parameter, unlike the original model which depends of the stressed
blood volume.

Comparing the simulations of the complete model of Pironet et al. and the
reduced version of this model allows one to conclude that the simulations are
qualitatively similar. The sensitivity analysis of the reduced model is explored.
This analysis showed that two parameters, the heart period and the stressed
blood volume, have a major effect on the performance of the model since the
normalized ranking of the five state variables associated with these parameters
have some of the highest values. Other authors have shown that beat durations
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Fig. 3: Waveform for Vsa using Solid line: nominal parameters, dashed line: T =
0.5214, dotted line: Rp = 0.2816

are variable even under sinusoidal conditions causing pressure variability be-
tween beats [1, 9], the above fact seems to corroborate that heart period is a
very sensitive parameter. Because the heart period is not greatly altered by the
parameter identification problem according to Pironet et al.[12], this parameter
was not considered for the sensitivity analysis of the work of Pironet et al. The
results suggest that the reduced version can be validated. However, a rigorous
proof of this fact exceeds the scope of this paper and must be addressed in a fu-
ture investigation. Also as future work, the reduced model is going to be coupled
with a baroreflex model, with the main objective of solving a control problem
associated with the fluid therapy.
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